Path Traced Subsurface Scattering using Anisotropic Phase Functions and Non-Exponential Free Flights
نویسندگان
چکیده
An important distinction of diffusion models is that they only model multiple scattering. We generally distinguish between scatter events at different path depths: Zero-scatter events are photons that enter a surface and immediately reach an exit point without having scattered in the medium itself. Single scatter events do the same with a single interaction inside the volume. Multiple scatter events have two or more scatter events before exiting through the surface of the object. Diffusion models only capture the multiple scattering contribution, leaving zero and single scatter events to be treated explicitly as separate BxDF lobes.
منابع مشابه
Approximate Reflectance Profiles for Efficient Subsurface Scattering
We present three useful parameterizations of a BSSRDF model based on empirical reflectance profiles. The model is very simple, but with the appropriate parameterization it matches brute-force Monte Carlo references better than state-of-the-art physically-based models (quantized diffusion and photon beam diffusion) for many common materials. Each reflectance profile is a sum of two exponentials ...
متن کاملCollision statistics for random flights with anisotropic scattering and absorption.
For a broad class of random walks with anisotropic scattering kernels and absorption, we derive explicit formulas that allow expressing the moments of the collision number n(V) performed in a volume V as a function of the particle equilibrium distribution. Our results apply to arbitrary domains V and boundary conditions, and allow assessing the hitting statistics for systems where the typical d...
متن کاملVelocity Modeling in a Vertical Transversely Isotropic Medium Using Zelt Method
In the present paper, the Zelt algorithm has been extended for ray tracing through an anisotropic model. In anisotropic media, the direction of the propagated energy generally differs from that of the plane-wave propagation. This makes velocity values to be varied in different directions. Therefore, velocity modeling in such media is completely different from that in an isotropic media. The vel...
متن کاملPath Integration for Light Transport in Volumes
Simulating the transport of light in volumes such as clouds or objects with subsurface scattering is computationally expensive. We describe an approximation to such transport using path integration. Unlike the more commonly used diffusion approximation, the path integration approach does not explicitly rely on the assumption that the material within the volume is dense. Instead, it assumes the ...
متن کاملSubdivision Next-Event Estimation for Path-Traced Subsurface Scattering
We present subdivision next-event estimation (SNEE) for unbiased Monte Carlo simulation of subsurface scattering. Our technique is designed to sample high frequency illumination through geometrically complex interfaces with highly directional scattering lobes enclosing a scattering medium. This case is difficult to sample and a common source of image noise. We explore the idea of exploiting the...
متن کامل